
A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 1 of 9

 Describe methods of ensuring that software is reliable -å testing, ß testing, agreements

between software houses and purchaser for testing.

 Understand the need for maintenance release(s).

 Understand the reasons why fully tested software may fail to operate successfully when

implemented as part of an information technology system

Methods of ensuring that software is reliable - chapter 62

Remember the following stages used in ICT 3 and ICT6:

1. Unit Testing - where each individual component is tested.

2. Module Testing - a module is a collection of dependant components or sub-routines.

3. Subsystem Testing - collections of modules are integrated into modules.

4. System Testing - Subsystems are integrated to make up the entire system. This stage of

testing will examine whether or not the system meets its requirements specification.

5. Acceptance Testing - This is the final stage in the testing process before the system is

accepted for operational use.

These stages will have to be repeated when modifications are made.

Make or buy? P.335

At the start of the systems life cycle, decisions have to be made about how to acquire the software

that is needed. The options are:

 Software can be written by the end user

 A specialist department could design, write, test and evaluate the software

 External consultants could be called in to write and test the software

 An off-the-shelf package could be bought

 Software could be leased, with an annual fee payable for use.

End-user written software p.335

Computer-literate end-users can produce their own applications, using software such as Excel or

Access. Their applications will be designed to do a specific job.

The advantages of this approach are that the end-user will know his requirements precisely and he

should get exactly what he wants without waiting.

Disadvantages are that the end-user could leave and then wouldn't be available to provide

technical support. His application may be incompatible with other software used by the

organisation.

This approach is only suitable for minor projects with a limited life-span.

Writing software in-house

Advantages are that information can be kept within the organisation.

Disadvantages are that this approach requires people with certain skills who might need to be

recruited. An external consultancy may have more experience of specialist skills

External consultants p.336

The job could be put out to tender. Cost is a consideration but a software house that has a proven

track record of successful projects might be worth the extra money.

Buying a package p.336

The advantages of buying an off-the-shelf package are:

 Cheaper

A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 2 of 9

 Immediately available

 Documentation is usually available

 Training courses may be available

 Technical support is usually available

 The organisation can look at reviews of the product and/or talk to other users

 Upgrades are usually available on a regular basis

 The disadvantages are:

 The package may not do exactly the job that is required.

 It may be incompatible with hardware or software that is already being used.

Leasing Software p.336

Instead of buying software, it can be leased for an annual fee. The cost is less in the short-term

but in the long run this is a more expensive option.

Modifying existing packages p.336

Software can be bought and then modified. This is a dangerous option because it means that the

manufacturer will no longer provide support. The modifications can cause errors in other parts of

the software, which would then require more modifications.

Internet.com

PC Webopedia definitions and links for testing - white box, black box, alpha and beta.

The KJSSome highly recommended class notes entitled "Software Acquisition and Testing."

Software Testing Institute

http://www.softwaretestinginstitute.com/

Homepage of the STI. Loads of articles and links to material concerned with software testing.

http://www.aptest.com/resources.html

Free evaluation copies of software testing tools. These provide some useful insights.

http://www.softwareqatest.com/

Truly hideous looking site! Don't be put off as this site contains some excellent material.

http://search.internet.com/www.webopedia.com?IC_QueryText=testing&IC_QueryDatabase=www.webopedia.com
http://www.thekjs.essex.sch.uk/yates/it05-7.htm
http://www.ondaweb.com/sti/
http://www.softwaretestinginstitute.com/
http://www.softwareqatest.com/

A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 3 of 9

Problems in using software - BUGS

 Most choices in a program route include a series of steps that contain further choices and

steps creating many complex paths. A program of several hundred lines can have tens of

such choices and paths. Important programs within an organisation will have thousands or

even millions of lines as well as hundreds or thousands of decision points.

 With so many lines of code and decision points a large number of errors will creep in.

 The consequences of these errors in code (or BUGS - remember Grace Hopper) can be

expensive and in certain cases fatal to life or to the business.

Why do errors occur?

 Typing errors - almost certain to happen many times in dealing with tens of thousands of

lines of code.

 Lack of clarity in program specification

 Misunderstanding by the end-users concerning what actions are needed under every

possible combination of circumstances.

 Featuritis - glue piles of features without thinking about integration and how separate

parts interact.

 Programmers take undocumented shortcuts that sometimes are not supported in future

releases. Similarly programmers don’t follow standard interface guidelines. Improper use

of a complex programming technique to code a tricky passage

 Inadequate testing - leaving testing until coding is almost finished makes it difficult to

turn back original design considerations.

 Poor Documentation leaves programmers who come back to edit programs in distress.

 Pressure of time usually commercial

 Cost - each line of the space shuttle’s flight control software costs NASA about $1000 or

10 times more than for typical commercial software. Would you buy a word-processor or

a spreadsheet for $5000 no matter how bug free it was? Or would you pay 90% less and

live with the bugs?

Famous examples of bugs.

1. In 1945 Grace Hopper who spearheaded the standardisation of COBOL was asked to

investigate why the computer she was working on had stopped. After looking inside the

computer, she found a bug. It was a moth that had been beaten to death by an electrical relay

signal. The moth was removed by tweezers (debugged).

2. Summer of 1991 - telephone breakdowns in California and along Eastern seaboard - errors in

signalling software. - immediately before breakdown a bug was introduced by changing 3

lines of code in the several million line signalling program. After this tiny change no one

thought it necessary to retest the program. Commercial pressure - give new feature NOW.

3. In 1986 two cancer patients in East Texas received fatal doses of radiation from the Therac-

25 computer controlled radiation therapy machine. There were several errors including the

failure of programmer to detect mis-coordination between concurrent tasks. FAMOUS CASE

A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 4 of 9

Solutions

 The only way to make certain no errors exist is to test every line of code and every

option. (See the diagram on P.337)

However studies indicate that in a large application (e.g. payroll, hotel reservation system) would

require thousands of years even on the most powerful computers available. This is NOT a

realistic option, therefore: -

Sweat over the design specification - managers and customers often find it difficult to

specify how a proposed program is supposed to perform.

Cleanly divides up tasks - makes it easier to co-ordinate and integrate. Structured

programming - modularised. When bugs appear they are easily isolated and corrected. If

necessary whole sections can be changed without affecting the basic logic.

Avoid shortcuts
Use comments liberally to describe code

Test extensively - BOTH the individual components and the interworkings of the entire

system. But note - 400 people spent five years working on the Boeing 777 flight-control

software.

Independently validate the product

Include backup systems

Technology-change and process-change within the organisation need to be managed

Syntax errors.

A compiler will report badly formed statements after it has tried to compile the source code; an

interpreter will report illegal statements as it attempts to execute them

Logic errors - test data is created to try to trap errors.

 Normal data - the most general data for which the program was designed to handle.

 Extreme values - test behaviour of the system at the upper and lower limits of acceptability.

Zero or null values important here.

 Exceptional data - illegal data - particularly where non-programmers use systems.

A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 5 of 9

Methods used to test Software p. 337

 Testing (alpha testing)

 Commercial software is traditionally developed to an incomplete state with some questions of

design left unresolved. It is then issued to a restricted audience of testers usually within the

developers’ own company.

 Testing in-house i.e. with test data provided by software house, this is needed to test the

implementation against design specification

. Testing (beta testing)

 Beta testing is done when software is being prepared for release. When changes on alpha test

have been made the software is then issued to a number of privileged customers in exchange

for their constructive comments. e.g. authors of how-to manuals, computer magazine

reviewers.

 Testing is needed to detect errors not identified at the alpha stage, this is top-down testing i.e.

real users become testers

 Another method might be to use off-site software house with `live data’

 Several beta versions are often released to iron out problems

Agreements

May exist between software houses and the purchaser for testing, in return purchaser is involved

in development of the product, is given discounted prices and priority for upgrades or bug-fixes.

Maintenance Releases p. 338/9

The maintenance phase of a system begins once a system goes into production and lasts for as

long as the system continues to be used. The maintenance process is triggered by requests from

users who may report bugs or request new features. The cost and impact of each change will be

assessed before a decision to go ahead is authorised. Minor changes in software packages are

usually released with version numbers such as 3.1, 2.3, 3.3 etc. Major releases have new version

numbers e.g. 4.0, 5.0. A number of reasons may trigger maintenance

 Previously undetected errors may be discovered in the software

 The original requirements may change to meet the changing needs of the user.

 Hardware developments may give scope for advances in software.

 New legislation may be introduced, which impacts on software (e.g. a new tax will affect

accounting software)

A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 6 of 9

Lehman and Belady 1985 p.339

 The law of continuing change

A program that is used in a real-world environment necessarily must change or become

progressively less useful in that environment.

 The law of increasing complexity
As an evolving program changes, its structure tends to become more complex. Extra

resources must be devoted to preserving and simplifying the structure.

 The law of large program evolution
Program evolution is a self-regulating process. System attributes such as size, time between

releases and the number of reported errors are approximately invariant for each system

release.

 The law of organisational stability
Over a program’s lifetime, its rate of development is approximately constant and independent

of the resources devoted to system development.

 The law of conservation of familiarity
Over the lifetime of a system, the incremental change in each release is approximately

constant.

Types of Maintenance Release P.338

Perfective The system can be made better without

changing its functionality e.g. improving

performance speed, memory usage, etc.

Adaptive The company may change the way it works

e.g. moving from stand-alones to networks.

Corrective Fixing bugs which only come to light after

release e.g. the millenium bug.

HOW?

mail-shot to all licensed users despatch of update disk/floppy

computer bulletin board with detail of

patches, fixed, known errors, etc.

A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 7 of 9

EXAMINATION QUESTIONS

Before releasing a new package the Software Company carries out alpha and beta testing

(a) What are these two types of testing and why are they both needed? (6)

(b) Explain why, once the package has been released there may be a need for maintenance

releases and how might these be dealt with. (6)

(a) Alpha testing: Testing in-house, with test data provided by software house, needed to test

implementation against design specification; 3x1=3

Beta testing off-site software house, with `live data’, by real users, needed to detect errors not

identified at alpha stage; 3x1=3

(b)Need for maintenance:

Perfective - improving performance speed, memory usage, etc. Corrective: fixing bugs, which

only come to light after release.

Dealt with by mail-shot to all licensed users, despatch of update disk/floppy, and computer

bulletin board with detail of patches, fixed, known errors, etc.

1997.5 (6 marks)
A software company is preparing to release a new application program. Describe the two types

of testing carried out before the final release of the software. Explain why both are needed.

 Each type must include justification to warrant 3 marks.

 alpha testing (1) - testing in-house (1) with data provided by software house (1) needed to

test implementation against design spec.(1)

 beta testing (1), off-site/real user testing (1), using live data (1), needed to detect errors not

detected at alpha stage (1) Beta testing involves a wider audience (1) & different

environments. (1)

 Candidates may take an alpha/beta/reasons for both approach - use a 2+2+2 model

1999.2 (5 marks)
 A software company has notified customers of a maintenance release for its accounting package.

The notification states that a programme of alpha and beta testing will be carried out to ensure

that the maintenance release is reliable.

(a) State three reasons why a maintenance release might be necessary. (3)

(b) What is meant by the terms:

(i) alpha testing?

(ii) beta testing? (2)

(a) ADAPTIVE MAINTENANCE: EG

To deal with y2k or EMU changes (1)

To deal with external issues such as tax law, budgetary, tax rate, etc (1).

To deal with hardware or software developments, new processors, new operating systems, etc (1)

PERFECTIVE MAINTENANCE: EG

To enhance functionality/ introduce new features of the package (1)

To decrease processing time (1)

To improve HCI (1)

CORRECTIVE MAINTENANCE EG:

To fix bugs/logic errors, coding errors, etc - NOT ‘problems’ must be more specific (1) Etc

Any 3x1=3

A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 8 of 9

(b) alpha testing carried out by software house (1)

beta testing carried out by selection of software users (1)

June 2002.1

Software houses go through a long testing programme before releasing a product.

Despite this, problems can still occur with that product.

Give three reasons why testing may not be completely successful. (3 marks)

 requirement to keep development cost to defined limits (1)

 requirement to keep development time to deadlines (1)

 in order to gain/maintain edge over competition - get product to market first (1)

 user has used product in a way that no-one has previously done (1)

 new hardware/ software is released the company was not aware of (1)

 inadequate test plan / data (1)

 etc.

Spring 2003.7

A software company is producing a software package to perform an initial assessment of students

entering colleges.

a. There is a fixed deadline for the release of this package.

Describe two effects that this might have on the final product. (4 marks)

b. The production of this package is a complex task. For this reason the company has

decided to allocate sub-tasks to separate development teams.

Describe two benefits of this approach. (4 marks)

c. Two weeks after the release of the package, several colleges report identical problems

with the software.

Describe what the company should do in this situation. (2 marks)

a.

 Testing may not be fully carried out (1) so e.g. only the major functions of the software are

checked/ only checked against a small set of hardware (1)

 Functionality may be left out (1) as it is deemed superfluous to requirements (1)

 Programming is not fully documented (1) so it is difficult to improve/ correct the software (1)

2 x (2,1,0) marks

b.

 This should reduced the development time (1) as parts can be worked on simultaneously (1)

 Personnel with particular expertise can be given parts of the system (1) so that the parts of

the system are as efficient as possible (1)

 By using a modular approach (1) the system should be easier to test/ modify/ maintain (1)

2 x (2,1,0) marks

c.

 Produce a maintenance release/ software patch/ update (1) so that the software can operate

with the operating system/ hardware that the colleges have (1)

 Provide a website/ document (1) so that technical staff have instructions on how to address

the issue (1)

1 x (2,1,0) marks

June 2003.1

A2 MODULE 5 (ICT5) TOPIC 14.9 SOFTWARE RELIABILITY

http://www.nchadderton.zen.co.uk/front.htm Page 9 of 9

Differentiate between alpha-testing and beta-testing. (4 marks)

